五年级数学简便运算方法

ID:68018

时间:2023-07-11

相关标签:  数学  

  在孩子的小学数学中,数学的学习,基本内容包含:对数的认识,数的运算,图形的认识以及运算,还有就是对数的应用,这几个部分,但是在从1年级到6年级一直学习的一项内容,而且贯穿始终的,那就是简便运算。

  在整数范围、小数范围、分数范围内都会作为一个内容重复出现,而这个内容也正是小学数学中的一个难点。

提取公因式

  这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数,要注意相同因数的提取

  例:

  0.92×1.41+0.92×8.59

  =0.92×(1.41+8.59)

借来借去法

  看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。

  考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。

  例:

  9999+999+99+9

  =9999+1+999+1+99+1+9+1—4

拆分法

  顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。

  例:

  3.2×12.5×25

  =8×0.4×12.5×25

  =8×12.5×0.4×25

加法结合律

  注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

  例:

  5.76+13.67+4.24+6.33

  =(5.76+4.24)+(13.67+6.33)

拆分法和乘法分配律

  这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。

  例:

  34×9.9 = 34×(10-0.1)

利用基准数

 

  在一系列数中找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。

  例:

  2072+2052+2062+2042+2083

  =(2062x5)+10-10-20+21

利用公式法

  (1) 加法:

  交换律,a+b=b+a,

  结合律,(a+b)+c=a+(b+c).

  (2) 减法运算性质:

  a-(b+c)=a-b-c,

  a-(b-c)=a-b+c,

  a-b-c=a-c-b,

  (a+b)-c=a-c+b=b-c+a.

  (3)乘法(与加法类似):

  交换律,a*b=b*a,

  结合律,(a*b)*c=a*(b*c),

  分配率,(a+b)xc=ac+bc,

  (a-b)*c=ac-bc.(4) 除法运算性质(与减法类似):

  a÷(b*c)=a÷b÷c,

  a÷(b÷c)=a÷bxc,

  a÷b÷c=a÷c÷b,

  (a+b)÷c=a÷c+b÷c,

  (a-b)÷c=a÷c-b÷c.

  前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。

  例1:

  283+52+117+148

  =(283+117)+(52+48)

  (运用加法交换律和结合律)。

  减号或除号后面加上或去掉括号,后面数值的运算符号要改变。

  例2:

  657-263-257

  =657-257-263

  =400-263

  (运用减法性质,相当加法交换律。)

  例3:

  195-(95+24)

  =195-95-24

  =100-24

  (运用减法性质)

  例4:

  150-(100-42)

  =150-100+42

  (同上)

  例5:

  (0.75+125)*8

  =0.75*8+125*8=6+1000

  (运用乘法分配律)

  例6:

  ( 125-0.25)*8

  =125*8-0.25*8

  =1000-2

  (同上)

  例7:

  (1.125-0.75)÷0.25

  =1.125÷0.25-0.75÷0.25

  =4.5-3=1.5。

  ( 运用除法性质)

  例8:

  (450+81)÷9

  =450÷9+81÷9

  =50+9=59.

  (同上,相当乘法分配律)

  例9:

  375÷(125÷0.5)

  =375÷125*0.5=3*0.5=1.5.

  (运用除法性质)

  例10:

  4.2÷(0。6*0.35)

  =4.2÷0.6÷0.35

  =7÷0.35=20.

  (同上)

  例11:

  12*125*0.25*8

  =(125*8)*(12*0.25)

  =1000*3=3000.

  (运用乘法交换律和结合律)

  例12:

  (175+45+55+27)-75

  =175-75+(45+55)+27

  =100+100+27=227.

  (运用加法性质和结合律)

  例13:

  (48*25*3)÷8

  =48÷8*25*3

  =6*25*3=450.

  (运用除法性质, 相当加法性质)

裂项法

  分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。

  常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细地观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

  分数裂项的三大关键特征:

  (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

  (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”

  (3)分母上几个因数间的差是一个定值。

五年级数学简便运算方法

下载Word文档到电脑,方便收藏和打印

编辑推荐:
下载WORD文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:2298946647

最新文章

闽ICP备18023965号-5闽公安备35020602002120     Copyright © 2011-2021 https://www.xuexiba.cn/ All Rights Reserved

本站作品均来自互联网,转载目的在于传递更多信息,并不代表本站赞同其观点和对其真实性负责。如有侵犯您的版权,请联系我们。

免费复制

微信扫码关注,免费获得验证码

微信公众号

输入验证码后可免费复制

付费复制

付款成功后请在1小时之内完成复制

微信支付

支付宝支付

应付金额: 0

付款成功后,概不退款